人工智能的趋势之一是加强学习的成熟度

科技 2021-10-13 08:46:42
导读 大家好,我是本栏目的编辑郝帅。现在我给大家解释一下上面的问题。人工智能最引人注目的趋势之一是加强学习的成熟度,并成为构建和训练统计

大家好,我是本栏目的编辑郝帅。现在我给大家解释一下上面的问题。人工智能最引人注目的趋势之一是加强学习的成熟度,并成为构建和训练统计模型以做有用事情的主流方法。

正如我今年早些时候解释的那样,强化学习正在企业人工智能项目中发挥作用。这项技术越是脱离了其在机器人、游戏和仿真等方面的传统优势,现在就越是体现在it运营管理、能源、医疗、商业、交通和金融等各种前沿AI应用中。它甚至是社交媒体、自然语言处理、机器翻译、计算机视觉和数字助理等新一代人工智能解决方案中不可或缺的一部分。

为了加深强化学习算法在企业人工智能中的易用性,开发人员需要工具来与这些项目协作,并将生成的模型部署到生产环境中。在这方面,最近一些重要的行业公告显示了开源工作台、库和devops管道的成熟,从而实现了以强化学习为重点的人工智能计划。

迭代强化学习开发工作台。

强化学习的很多进步都是通过我们认为理所当然的主流应用(比如多人在线游戏)或者未来主义(比如机器人)的用例进入我们的生活,我们没有意识到它们正在悄悄进入主流。增强学习代理现在可以玩超人级别的游戏,例如在Open AI Five比赛中。

开发者可以为游戏和机器人使用越来越多的开源强化学习框架,包括OpenAI的Roboschool、Unity Technology的机器学习代理和英特尔的Nervana蔻驰。您还可以访问一个开源的强化学习框架,该框架可以扩展到各种挑战。例如,谷歌的TensorFlow代理支持高效的批量强化学习工作流,而加州大学伯克利分校的Ray RLLib提供了一个灵活的基于任务的编程模型,用于在TensorFlow和PyTorch中构建基于代理的强化学习应用程序。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时候联系我们修改或删除,多谢

最新文章